Exactness of a rank one quantum induction functor

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A signalizer functor theorem for groups of finite Morley rank

There is a longstanding conjecture, due to Gregory Cherlin and Boris Zilber, that all simple groups of finite Morley rank are simple algebraic groups. Towards this end, the development of the theory of groups of finite Morley rank has achieved a good theory of Sylow 2-subgroups. It is now common practice to divide the Cherlin-Zilber conjecture into different cases depending on the nature of the...

متن کامل

2 Quantum field theory as a functor

The principle of local covariance which was recently introduced admits a generally covariant formulation of quantum field theory. It allows a discussion of structural properties of quantum field theory as well as the perturbative construction of renormalized interacting models on generic curved backgrounds and opens in principle the way towards a background independent perturbative quantization...

متن کامل

On the quantum Kazhdan-Lusztig functor

One of the most exciting developments in representation theory in the recent years was the discovery of the Kazhdan-Lusztig functor [KL93a, KL93b, KL94a, KL94b], which is a tensor functor from the fusion category of representations of an affine Lie algebra to the category of representations of the corresponding quantum group, and is often an equivalence of categories. Informally speaking, this ...

متن کامل

Shape Invariance and the Exactness of Quantum Hamilton-Jacobi Formalism

Quantum Hamilton-Jacobi Theory and supersymmetric quantum mechanics (SUSYQM) are two parallel methods to determine the spectra of a quantum mechanical systems without solving the Schrödinger equation. It was recently shown that the shape invariance, which is an integrability condition in SUSYQM formalism, can be utilized to develop an iterative algorithm to determine the quantum momentum functi...

متن کامل

A Modular Functor Which is Universal for Quantum Computation

We show that the topological modular functor from Witten–Chern–Simons theory is universal for quantum computation in the sense that a quantum circuit computation can be efficiently approximated by an intertwining action of a braid on the functor’s state space. A computational model based on Chern–Simons theory at a fifth root of unity is defined and shown to be polynomially equivalent to the qu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATHEMATICA SCANDINAVICA

سال: 1999

ISSN: 1903-1807,0025-5521

DOI: 10.7146/math.scand.a-13931